Differential Interactions of Heparin and Heparan Sulfate Glycosaminoglycans with the Selectins. Implications for the Use of Unfractionated and LowMolecular Weight Heparins as Therapeutic Agents

Koenig, A.
Norgard-Sumnicht, K.
Linhardt, Robert J.
Varki, A.
No Thumbnail Available
Other Contributors
Issue Date
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Differential Interactions of Heparin and Heparan Sulfate Glycosaminoglycans with the Selectins. Implications for the Use of Unfractionated and LowMolecular Weight Heparins as Therapeutic Agents, A. Koenig, K. Norgard-Sumnicht,R.J. Linhardt, A. Varki, Journal of Clinical Investigation, 101,877-889, 1998.
The selectins are calcium-dependent C-type lectins that bind certain sialylated, fucosylated, sulfated glycoprotein ligands. L-selectin also recognizes endothelial proteoglycans in a calcium-dependent manner, via heparan sulfate (HS) glycosaminoglycan chains enriched in unsubstituted glucosamine units. We now show that these HS chains can also bind P-selectin, but not E-selectin. However, while L-selectin binding requires micromolar levels of free calcium, P-selectin recognition is largely divalent cation-independent. Despite this, HS chains bound to P-selectin are eluted by ethylenediamine tetraacetic acid (EDT A), but only at high concentrations. Porcine intestinal mucosal (mast cell-derived) heparin (PIM-heparin) shows similar properties, with no binding to E-selectin, calcium-dependent binding of a subfraction to L-selectin and to P-selectin, and calcium-independent binding of a larger fraction to P-selectin, the latter being disrupted by high EDT A concentrations. Analysis of defined heparin fragment pools shows a size dependence for interaction, with tetradecasaccharides showing easily detectable binding to L- and P-selectin affinity columns. L-selectin binding fragments include more heavily sulfated and epimerized regions and, as with the endothelial HS chains, they are enriched in free amino groups. The P-selectin binding component includes this fraction as well as some less highly modified regions. Thus, endothelium-derived HS chains and mast cell-derived heparins could play a role fn modulating the biology of selectins in vivo. Notably, P- and L-selectin binding to sialyl-Lewisx and to HL-60 cells (which are known to carry the native ligand PSGL-1) is inhibited by unfractionated pharmaceutical heparin preparations at concentrations 12-50-fold lower than those recommended for effective anticoagulation in vivo. In contrast, two low molecular weight heparins currently considered as clinical replacements for unfractionated heparin are much poorer inhibitors. Thus, patients undergoing heparin therapy for other reasons may be experiencing clinically significant inhibition of L- and P-selectin function, and the current switchover to low-molecular weight heparins may come at some loss of this effect. Low-dose unfractionated heparin should be investigated as a treatment option for acute and chronic diseases in which P- and L-selectin play pathological roles. (J. Clin. Invest. 1998. 101:877-889.)
Journal of Clinical Investigation, 101, 877-889
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY