Detection of glycosaminoglycans by polyacrylamide gel electrophoresis and silver staining

Lariviere, Wells B.
Han, Xiaorui
Oshima, Kaori
McMurtry, Sarah A.
Linhardt, Robert J.
Schmidt, Eric P.
Thumbnail Image
Other Contributors
Issue Date
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Full Citation
Detection of glycosaminoglycans by polyacrylamide gel electrophoresis and silver staining, W. B. LaRiviere, X. Han, K. Oshima, S. A. McMurtry, R. J. Linhardt, E. P. Schmidt, Journal of Visualized Experiments, 168, e62319, 2021.
Sulfated glycosaminoglycans (GAGs) such as heparan sulfate (HS) and chondroitin sulfate (CS) are ubiquitous in living organisms and play a critical role in a variety of basic biological structures and processes. As polymers, GAGs exist as a polydisperse mixture containing polysaccharide chains that can range from 4000 Da to well over 40,000 Da. Within these chains exists domains of sulfation, conferring a pattern of negative charge that facilitates interaction with positively charged residues of cognate protein ligands. Sulfated domains of GAGs must be of sufficient length to allow for these electrostatic interactions. To understand the function of GAGs in biological tissues, the investigator must be able to isolate, purify, and measure the size of GAGs. This report describes a practical and versatile polyacrylamide gel electrophoresis-based technique that can be leveraged to resolve relatively small differences in size between GAGs isolated from a variety of biological tissue types.
Journal of Visualized Experiments, 168, e62319
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
Journal of Visualized Experiments
A full text version is available in DSpace@RPI