Ultrasound-assisted fast preparation of low molecular weight fucosylated chondroitin sulfate with antitumor activity

Authors
Li, Junhui
Li, Shan
Wu, Limei
Yang, Huifang
Wei, Chaoyang
Ding, Tian
Linhardt, Robert J.
Zheng, Xiaoliang
Ye, Xingqian
Chen, Shiguo
ORCID
https://orcid.org/0000-0003-2219-5833
No Thumbnail Available
Other Contributors
Issue Date
2019-04-01
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Ultrasound-assisted fast preparation of low molecular weight fucosylated chondroitin sulfate with antitumor activity, J. Li, S. Li, H. Yang, C. Wei, L. Yan, T. Ding, R. J. Linhardt, X. Zheng, X. Ye, S. Chen, Carbohydrate Polymers, 209, 82-91, 2019.
Abstract
Fucosylated chondroitin sulfate from sea cucumber Isostichopus badionotus (fCS-Ib) was depolymerized with an ultrasound-accelerated, metal-free Fenton chemistry, relying on H2O2/ascorbic acid redox system. Fragments of different molecular weights were obtained at different reaction temperatures, ascorbic acid concentrations and ultrasonic intensities. The structures of two typical depolymerized fragments were evaluated using high-performance liquid chromatography (HPLC), infrared spectroscopy (IR), and nuclear magnetic resonance spectroscopy (NMR). The results showed that ultrasound enhanced the degradation efficiency of H2O2/ascorbic acid system mainly by disaggregating sulfated polysaccharide clusters and that free radicals induced depolymerization with no significant chemical changes in the backbone of fCS-Ib and with no obvious loss of fucose branches. The antitumor activity, using A549 lung cancer cells, showed that the ultrasound treated low molecular weight sulfated fragment enhanced proliferation-inhibitory and anti-migration effects, compared to native fCS-Ib. This was different from the anticoagulant activity of fCS-Ib, suggesting that the molecular weight change may cause a conformational transition and affect biological activity. We propose that combining ultrasound with non-metal Fenton chemistry as an effective method to prepare low molecular weight fCS fragments with potential applications as functional foods, antitumor drugs, and that these fCS fragments display negligible bleeding risk.
Description
Carbohydrate Polymers, 209, 82-91
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
Carbohydrate Polymers
https://harc.rpi.edu/
Access
https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1016/j.carbpol.2018.12.061