Measurement of prompt fission neutron spectrum using a gamma tag double time-of-flight setup
Authors
Blain, Ezekiel
Issue Date
2014-12
Type
Electronic thesis
Thesis
Thesis
Language
ENG
Keywords
Nuclear engineering and science
Alternative Title
Abstract
Current uncertainties in the prompt fission neutron spectrum have a significant effect of up to 4% on keff for reactor criticality and safety calculations. Therefore, a method was developed at RPI to improve the accuracy of the measurement of the prompt fission neutron spectrum. This method involves using an array of BaF2 gamma detectors to tag that a fission event has occurred, and a double time-of-flight setup to obtain the prompt fission neutron spectrum as a function of incident neutron energy. The gamma tagging method improves upon conventional fission chambers by allowing for much larger sample sizes to be utilized while not suffering from effects of discriminator level on the shape of the prompt fission neutron spectrum. A coincidence requirement on an array of 4 BaF2 gamma detectors is used to determine the timing of the fission event. Furthermore, a method is under development for the use of thin plastic scintillators for measurement of the prompt fission neutron spectrum with low energies. Measurements with spontaneous fission of 252Cf show good agreement with previous datasets and current evaluations as well as providing accurate data down to 50 keV with the plastic scintillator detector. Preliminary incident neutron beam analysis was performed with 238U and shows good agreement with the current evaluations demonstrating the feasibility of the gamma tagging method for in beam prompt fission neutron spectrum measurements of various isotopes.
Description
December 2014
School of Engineering
School of Engineering
Full Citation
Publisher
Rensselaer Polytechnic Institute, Troy, NY