Capillary electrophoresis for total glycosaminoglycan analysis

Authors
Ucakturk, Ebru
Cai, Chao
Li, Lingyun
Li, Guoyun
Zhang, Fuming
Linhardt, Robert J.
ORCID
https://orcid.org/0000-0003-2219-5833
No Thumbnail Available
Other Contributors
Issue Date
2014-01-01
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Capillary electrophoresis for total glycosaminoglycan analysis, E. Ucakturk, C. Cai, L. Li, G. Li, F. Zhang, R. J. Linhardt, Analytical and Bioanalytical Chemistry, 406, 4617–4626, 2014.
Abstract
A capillary zone electrophoresis-laser induced fluorescence detection (CZE-LIF) method was developed for the simultaneous analysis of disaccharides derived from heparan sulfate, chondroitin sulfate/dermatan sulfate, hyaluronan and keratan sulfate. Glycosaminoglycans (GAGs) were first depolymerized with the mixture of GAG lyases (heparinase I, II, III and chondroitinase ABC and chondroitinase AC II) and GAG endohydrolase (keratinase II) and the resulting disaccharides were derivatized by reductive amination with 2-aminoacridone. Nineteen fluorescently labeled disaccharides were separated using 50 mM phosphate buffer (pH 3.3) under reversed polarity at 25 kV. Using these conditions, all the disaccharides examined were baseline-separated in less then 25 min. This CZE-LIF method gave good reproducibility both migration time (≤ 1.03% for intra-day and ≤ 4.4% for inter-day) and the peak area values (≤ 5.6% for intra- and ≤ 8.69% for inter-day). This CZE-LIF method was used for profiling and quantification of GAG derivative disaccharides in bovine cornea. The results shows that the current CZE-LIF method offers fast, simple, sensitive, reproducible determination of disaccharides derived from total GAGs in a single run.
Description
Analytical and Bioanalytical Chemistry, 406, 4617–4626
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
Analytical and Bioanalytical Chemistry
https://harc.rpi.edu/
Access
https://login.libproxy.rpi.edu/login?url=https://doi.org/10.1007/s00216-014-7859-8