Structure and Activity of a Unique Heparin-Derived Hexasaccharide

Authors
Linhardt, Robert J.
Rice, K.G.
Merchant, Z.M.
Kim, Y.S.
Lohse, D.L.
ORCID
https://orcid.org/0000-0003-2219-5833
Loading...
Thumbnail Image
Other Contributors
Issue Date
1986
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
Attribution 3.0 United States
CC BY : this license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. Credit must be given to the authors and the original work must be properly cited.
Full Citation
Structure and Activity of a Unique Heparin-Derived Hexasaccharide, R.J. Linhardt, K.G. Rice, Z.M. Merchant, Y.S. Kim, D.L. Lohse, The Journal of Biological Chemistry, 261, 14448-14454 (1986).
Abstract
A hexasaccharide representing a major sequence in porcine mucosal heparin has been enzymatically prepared from heparin. Its structure was determined by an integrated approach using chemical, enzymatic, and spectroscopic methods. Two-dimensional 1H homonuclear COSY, C-H correlation NMR, and selective irradiation were used to assign many of the NMR resonances. In addition, new techniques including sulfate determination by ion chromatography and Fourier transform IR and californium plasma desorption mass spectroscopy have been applied, resulting in an unambiguous structural assignment of delta IdoAp2S(1----4)-alpha-D-GlcNp2S6S(1----4)-alpha-L-IdoAp++ +(1----4)-alpha-D-GlcNA cp6S-(1----4)-beta-D-GlcAp(1----4)-alpha-D-GlcNp2S3S6S (where delta IdoA represents 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid, p represents pyranose, and GlcA and IdoA represent glucuronic and iduronic acid). This hexasaccharide contains a portion of the antithrombin III-binding site and has a Kd of 4 X 10(-5) M. Unlike other small heparin oligosaccharides, which are specific for coagulation factor Xa, it inhibits both factors IIa and Xa equally through antithrombin III. This hexasaccharide may have the unique capacity to act primarily through heparin cofactor II to inhibit thrombin (factor IIa) and shows over half of heparin's heparin cofactor II-mediated anti-factor IIa activity. These studies suggest the occurrence of contiguous binding sites on heparin for Xa, antithrombin III, and heparin cofactor II.
Description
The Journal of Biological Chemistry, 261, 14448-14454
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
American Society for Biochemistry and Molecular Biology (ASBMB) and Elsevier
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
https://harc.rpi.edu/
Access
Open Access
CC BY — Creative Commons Attribution