Dc-dc converters for renewable energy integration with medium-voltage dc grids

Authors
Suryadevara, Rohit
ORCID
Loading...
Thumbnail Image
Other Contributors
Parsa, Leila
Abouzeid, Alhussein A.
Chow, J. H. (Joe H.), 1951-
Julius, Anak Agung
Mishra, Sandipan
Issue Date
2019-05
Keywords
Electrical engineering
Degree
PhD
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
FB-ZCS dc-dc converters achieve soft-switching and smooth current commutation by utilizing quasi-resonant operation between the leakage inductance of transformer and a resonant capacitor shunt-connected across the transformer-secondary. In every switching half-cycle, the resonant capacitor is charged to its full-voltage irrespective of converter loading by nature of its shunt-connection. This requires a dedicated charging interval which results in duty-cycle loss. As the converter loading reduces, duty-cycle loss increases as the reduced input current takes longer time to charge the resonant capacitor to its full-voltage. To satisfy the resonant condition for a given leakage inductance, a larger resonant capacitor will be required for higher current ratings and the charging interval of this capacitor results in significant duty-cycle loss, restricting the operation range of converter.
Description
May 2019
School of Engineering
Department
Dept. of Electrical, Computer, and Systems Engineering
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.