Performance analysis and visualization tools to support the codesign of next generation computer systems

Authors
Ross, Caitlin J.
ORCID
Loading...
Thumbnail Image
Other Contributors
Carothers, Christopher D.
Cutler, Barbara M.
Ross, Robert B., 1972-
Shephard, M. S. (Mark S.)
Issue Date
2019-08
Keywords
Computer science
Degree
PhD
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
In this work, we demonstrate the efficacy of discrete event simulation in evaluating and improving the performance of parallel and distributed scientific analysis systems, such as the MG-RAST metagenomics analysis service provided by Argonne National Laboratory. We propose hardware and job scheduling changes to their system that can improve scalability under increased user workloads that are anticipated in the future. We use event-driven simulation to evaluate the proposed changes and compare them to the current infrastructure and job scheduling policies. However, the simulation exhibits poor parallel performance, which limits the size of the workloads able to be simulated for MG-RAST. This highlights the need for scalable analysis and visualization tools for use in optimistic PDES that can be used to gain insights to their rollback behavior and performance.
Description
August 2019
School of Science
Department
Dept. of Computer Science
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.