Understanding the effects of dilute sulfur additions, and metallization, on the thermoelectric properties of pnictogen chalcogenides and their interfaces

Authors
Devender
ORCID
Loading...
Thumbnail Image
Other Contributors
Ramanath, G. (Ganpati)
Borca-Tasçiuc, Theodorian
Keblinski, Pawel
Hull, Robert, 1959-
Mahajan, Ravi
Issue Date
2015-12
Keywords
Materials engineering
Degree
PhD
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
We also show that electrical contact conductivity in metallized pnictogen chalcogenide interfaces is sensitive to metal diffusion and telluride formation. In particular, Ni contacts yield the highest electrical contact conductivity and Cu the lowest, correlating with extent of metal diffusion and p-type metal-telluride formation. We finally show that pnictogen chalcogenides metallized with Sn-Ag-Cu/Ni solder-barrier bilayers exhibit ten-fold higher interfacial thermal conductance than that obtained with In/Ni bilayer metallization. Decreased interdiffusion and diminution of interfacial SnTe formation due to Ni layer correlates with the higher interfacial thermal conductance. Our findings should facilitate the design and development of pnictogen chalcogenide-based thermoelectric materials and devices.
Description
December 2015
School of Engineering
Department
Dept. of Materials Science and Engineering
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.