Predicting unknown mineral localities based on mineral associations

No Thumbnail Available
Authors
Prabhu, Anirudh
Morrison, SM
Eleish, Ahmed
Narkar, Shweta
Fox, Peter
Golden, JJ
Downs, RT
Perry, S
Burns, PC
Ralph, J
Issue Date
2019-12-10
Type
Article
Language
Keywords
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract
The oldest minerals are surviving materials from the formation of our solar system and they provide information about the evolution of Earth and other planets. Mindat (mindat.org), the Mineral Evolution Database (RRUFF.info/Evolution), and the Global Earth Mineral Inventory are some of the well known datasets in the field of mineralogy, which contain data about almost all known localities on Earth where minerals have been found. The increase in the amount and accuracy of mineral data and the improvements in technological resources make it possible to explore and answer large, outstanding scientific questions, such as, understanding the mineral assemblages on Earth and how they compare to assemblages and localities on other planets.. In this contribution, we present an affinity analysis method to: 1) Predict unreported minerals at an existing locality. 2) Predict localities for a set of known minerals. Affinity Analysis, or Market Basket Analysis, is a machine learning method that uses mined association rules to find interesting patterns in the data. The strength of the rules is identified using some measures of interestingness, such as ‘lift’. For example, when the occurrence of a mineral predicted with high confidence at a given locality is unexpected (low support), the rule used for such a prediction is considered ‘very interesting’. Successful implementation of this methodology will greatly aid the mineral discovery process.
Description
Full Citation
Prabhu A, Morrison SM, Eleish A, Narkar S, Fox PA, Golden JJ, Downs RT, Perry S, Burns PC, Ralph J, Runyon SE. Predicting unknown mineral localities based on mineral associations. InAGU Fall Meeting 2019 2019 Dec 10. AGU.
Publisher
AGU
Terms of Use
Journal
Volume
Issue
PubMed ID
DOI
ISSN
EISSN