Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin

Authors
Xiong, Jian
Bhaskar, Ujjwal
Li, Guoyun
Fu, Li
Li, Lingyun
Zhang, Fuming
Dordick, Jonathan S.
Linhardt, Robert J.
ORCID
https://orcid.org/0000-0003-2219-5833
Loading...
Thumbnail Image
Other Contributors
Issue Date
2013-09-10
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin, J. Xiong, U. Bhaskar, G. Li, L. Fu, L. Li, F. Zhang, J. S. Dordick, R. J. Linhardt, Journal of Biotechnology,167, 241– 247, 2013.
Abstract
Heparin is a critically important anticoagulant drug that is prepared from pig intestine. In 2007-2008, there was a crisis in the heparin market when the raw material was adulterated with the toxic polysaccharide, oversulfated chondroitin sulfate, which was associated with 100 deaths in the U.S. alone. As the result of this crisis, our laboratory and others have been actively pursuing alternative sources for this critical drug, including synthetic heparins and bioengineered heparin. In assessing the bioengineering processing costs it has become clear that the use of both enzyme-catalyzed cofactor recycling and enzyme immobilization will be needed for commercialization. In the current study, we examine the use of immobilization of C5-epimerase and 2-O-sulfotransferase involved in the first enzymatic step in the bioengineered heparin process, as well as arylsulfotransferase-IV involved in cofactor recycling in all three enzymatic steps. We report the successful immobilization of all three enzymes and their use in converting N-sulfo, N-acetyl heparosan into N-sulfo, N-acetyl 2-O-sulfo heparin.
Description
Journal of Biotechnology,167, 241–247
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
Elsevier
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
Journal of Biotechnology
https://harc.rpi.edu/
Access
A full text version is available in DSpace@RPI