Epitaxy and characterization of cubic GaN and Ga₁₋ₓInₓN on micropatterned Si (001)

Loading...
Thumbnail Image
Authors
Durniak, Mark T.
Issue Date
2016-08
Type
Electronic thesis
Thesis
Language
ENG
Keywords
Materials engineering
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract
Cubic GaInN/GaN heterostructures in the cubic lattice variant have the potential to overcome the limitations of wurtzite structures as commonly used for light emitting and laser diodes. Wurtzite GaInN (0001), suffers from large internal polarization fields, which force design compromises towards ultra-narrow quantum wells and reduced recombination volume and efficiency, particularly in the green, yellow, and red visible spectral regions. Cubic GaInN microstripes, grown here by metal-organic vapor phase epitaxy (MOVPE), on micropatterned Si (001), with {111} v-grooves oriented along Si ⟨01-1⟩, offer a system free of internal polarization fields, wider quantum wells, and a smaller bandgap energy. This thesis focuses on improving understanding of the growth mechanisms of the metastable cubic phase, evaluating the viability of wide quantum well structures, and the development of new cubic LED fabrication techniques.
Description
August 2016
School of Engineering
Full Citation
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Terms of Use
Journal
Volume
Issue
PubMed ID
DOI
ISSN
EISSN