Numerical and compact field effect transistor models validated for terahertz detection
Loading...
Authors
Liu, Xueqing
Issue Date
2019-05
Type
Electronic thesis
Thesis
Thesis
Language
ENG
Keywords
Electrical engineering
Alternative Title
Abstract
In this thesis, we have developed numerical models for TeraFET detectors in Synopsys Sentaurus TCAD. The model is valid over a wide dynamic input range (from around 5 mV to 6 V). By examining the physical mechanisms in such TCAD models, experimentally-observed saturation effect at high intensity levels (above 1 V) can be understood. The effect is associated with different mechanisms depending on the material system including leakage current, velocity saturation, and avalanche effect. We also developed a compact SPICE model for heterostructure FET (HFET) THz detectors valid over a wide dynamic range (from around 1 mV to 7 V). The model incorporates the saturation effect at high intensity levels (above 1 V) by including leakage components. Furthermore, resonant detection for submicron high mobility devices are observed by including Drude inductance. The developed SPICE-compatible models for TeraFET detectors include channel segmentation and Drude inductance, and are valid from 0.1 THz to 10 THz. The developed model also show the significance of electron inertia at high THz frequencies for long channel devices. All developed models show good agreement with the analytical theory and experimental data and could be effectively used for the simulation, design, and characterization of sub-millimeter wave and Terahertz wave devices and integrated circuits.
Description
May 2019
School of Engineering
School of Engineering
Full Citation
Publisher
Rensselaer Polytechnic Institute, Troy, NY