High Conductivity and High Capacitance Electrospun Fibers for Supercapacitor Applications

Bhattacharya, Somdatta
Roy, Indroneil
Tice, Aaron
Chapman, Caitlyn
Udangawa, Ranodhi
Chakrapani, Vidhya
Plawsky, Joel L.
Linhardt, Robert J.
No Thumbnail Available
Other Contributors
Issue Date
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
High Conductivity and High Capacitance Electrospun Fibers for Supercapacitor Applications, S. Bhattacharya, I. Roy, A. Tice, C. Chapman, R. Udangawa, V. Chakrapani, J. L. Plawsky, R. J. Linhardt, ACS Applied Materials & Interfaces, 12, 19369−19376, 2020.
Electrospinning is a simple method for producing nanoscale or microscale fibers from a wide variety of materials. Intrinsically conductive polymers (ICPs), such as polyaniline (PANI), show higher conductivities with the use of secondary dopants like m-cresol. However, due to the low volatility of most secondary dopants, it has not been possible to electrospin secondary doped ICP fibers. In this work, the concept of secondary doping has been applied for the first time to electrospun fibers. Using a novel design for rotating drum electrospinning, fibers were efficiently and reliably produced from a mixture of low- and high-volatility solvents. The conductivity of electrospun PANI–poly(ethylene oxide) (PEO) fibers prepared was 1.73 S/cm, two orders of magnitude higher than the average value reported in the literature. These conductive fibers were tested as electrodes for supercapacitors and were shown to have a specific capacitance as high as 3121 F/g at 0.1 A/g, the highest value reported, thus far, for PANI–PEO electrospun fibers.
ACS Applied Materials & Interfaces, 12, 19369−19376
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
ACS Applied Materials and Interfaces