Glycosaminoglycans from earthworms (Eisenia andrei

Im, A.R.
Park, Y.
Sim, J.S.
Zhang, Z.
Liu, Z.
Linhardt, Robert J.
Kim, Y.S.
Thumbnail Image
Other Contributors
Issue Date
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Full Citation
Glycosaminoglycans from earthworms (Eisenia andrei), A.-R. Im, Y. Park, J.-S. Sim, Z. Zhang, Z. Liu, R. J. Linhardt, Y. S. Kim, Glycoconjugate Journal, 27, 249–257, 2010.
The whole tissue of the earthworm (Eisenia andrei) was lyophilized and extracted to purify glycosaminoglycans. Fractions, eluting from an anion-exchange column at 1.0 M and 2.0 M NaCl, showed the presence of acidic polysaccharides on agarose gel electrophoresis. Monosaccharide compositional analysis showed that galactose and glucose were most abundant monosaccharides in both fractions. Depolymerization of the polysaccharide mixture with glycosaminoglycandegrading enzymes confirmed the presence of chondroitin sulfate/dermatan sulfate and heparan sulfate in the 2.0 M NaCl fraction. The content of GAGs (uronic acid containing polysaccharide) in the 2.0 M NaCl fraction determined by carbazole assay was 2%. Disaccharide compositional analysis using liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) analysis after chondroitinase digestion (ABC and ACII), showed that the chondroitin sulfate/dermatan sulfate contained a 4-O-sulfo (76%), 2,4-di-O-sulfo (15%), 6-O-sulfo (6%), and unsulfated (4%) uronic acid linked N-acetylgalactosamine residues. LC-ESI-MS analysis of heparin lyase I/II/III digests demonstrated the presence of N-sulfo (69%), N-sulfo-6-O-sulfo (25%) and 2-O-sulfo-N-sulfo-6-O-sulfo (5%) uronic acid linked N-acetylglucosamine residues.
Glycoconjugate Journal, 27, 249–257
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
A full text version is available in DSpace@RPI