MAPK/HOG signaling pathway induced stress-responsive damage repair a mechanism for Pichia pastoris to survive from hyperosmotic stress
No Thumbnail Available
Authors
Wang, Rongbin
Zhao, Tianyu
Zhuo, Junlin
Zhan, Chunjun
Zhang, Fuming
Linhardt, Robert J.
Bai, Zhonghu
Yang, Yankun
Issue Date
2021-02-01
Type
Article
Language
ENG
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Alternative Title
Abstract
Abstract BACKGROUND MAPK/HOG signaling pathway plays a key role in the response of yeast to external hyperosmotic stress. Over the past few decades, the regulation mechanism for this pathway in the robust yeast, Saccharomyces cerevisiae, has been elucidated. However, the weak ability of the biotechnical workhorse, Pichia pastoris, in surviving hyperosmotic stress suggests a unique regulatory mechanism needing further investigation. RESULT Here, we identified crucial genes in the MAPK/HOG pathway of P. pastoris and investigated their effects on cell growing in osmotically stressed environments by knocking out these genes using a novel CRISPR/Cas9 system. Using real-time polymerase chain reaction (RT-PCR) and yeast two-hybrid assay, transcription factors Hot1, Msn4 and Sko1 were demonstrated to be regulated by Pbs2 and Hog1 either at mRNA or protein level. We also examined the subcellular localization of these transcription factors, reflecting their translocation between cytoplasm and nucleus. The transcriptions of putative osmo-responsive genes were then studied by RT-PCR. We found the induction of glycerol-related genes, such as GT1 and GPD1, was marginal when cells experienced high osmolarity. The ability of P. pastoris to increase intracellular glycerol level was determined and found to be much weaker than that in S. cerevisiae. By contrast, stress-induced damage repair genes, including CTT1 and HSP12, were dramatically increased. CONCLUSION We conclude that P. pastoris could barely balance hyperosmotic stress by increasing intracellular glycerol concentrations, and stress-induced damage repair is still an important mechanism for P. pastoris survival under hyperosmotic stress. This study demonstrates a description of the MAPK/HOG pathway in P. pastoris and provides a trigger for improving its robustness.
Description
Journal of Chemical Technology & Biotechnology, 96, 412–422
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Full Citation
MAPK/HOG signaling pathway induced stress-responsive damage repair a mechanism for Pichia pastoris to survive from hyperosmotic stress, R. Wang, T. Zhao, J. Zhuo, C. Zhan, F. Zhang, R. J. Linhardt, Z. Baia, Y. Yang, Journal of Chemical Technology & Biotechnology, 96, 412–422, 2021.
Publisher
Terms of Use
Journal
Volume
Issue
PubMed ID
DOI
ISSN
10974660
2682575
2682575