Thermal conduction in disordered materials

Nie, Jihui
Thumbnail Image
Other Contributors
Keblinski, Pawel
Huang, Liping
Hull, Robert, 1959-
Borca-Tasçiuc, Theodorian
Issue Date
Materials engineering
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
We investigate the relative role of compositional and structural disorder in a phononic thermal conductivity reduction by studying three 50-50 SiGe alloy structures: ordered alloys, disordered alloys, and amorphous alloys, as well as pure amorphous Si and Ge structures for reference. While both types of disorder significantly reduce thermal conductivity, structural disorder is much more effective to this aim. The examination of phonon lifetimes in disordered alloys shows high values in a low frequency regime governed by Umklapp scattering that are reduced rapidly with increasing frequency following Rayleigh scattering behavior. The local properties analysis reveals that the structural disorder leads to elastic heterogeneities that are significantly larger than density heterogeneities, which is likely the key reason for amorphous semiconductor alloys having lower thermal conductivity than disordered alloys. Temperature dependence of thermal conductivity indicates the importance of propagating phonons and associated Umklapp scattering in SiGe alloy structures. Interestingly, longitudinal modes in amorphous and disordered alloys exhibit similar lifetimes, while transverse modes lifetimes show significant differences and are more temperature dependent.
August 2019
School of Engineering
Dept. of Materials Science and Engineering
Rensselaer Polytechnic Institute, Troy, NY
Rensselaer Theses and Dissertations Online Collection
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.