Strong reduction of the chain rigidity of hyaluronan by selective binding of Ca2+ ions

Authors
Giubertoni, G.
Pérez de Alba Ortíz, A.
Bano, F.
Zhang, X.
Linhardt, Robert J.
Green, D.E.
DeAngelis, P.L.
Koenderink, G.H.
Richter, R.P.
Ensing, B.
ORCID
https://orcid.org/0000-0003-2219-5833
Loading...
Thumbnail Image
Other Contributors
Issue Date
2021-02-09
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
Attribution 3.0 United States
CC BY : this license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. Credit must be given to the authors and the original work must be properly cited.
Full Citation
Strong reduction of the chain rigidity of hyaluronan by selective binding of Ca2+ ions, G. Giubertoni, A. Pérez de Alba Ortíz, F. Bano, X. Zhang, R.J. Linhardt, D. E. Green, P. L. DeAngelis, G.H. Koenderink, R. P. Richter, B. Ensing, and H.J. Bakker, Macromolecules, 54, 1137−1146, 2021.
Abstract
The biological functions of natural polyelectrolytes are strongly influenced by the presence of ions, which bind to the polymer chains and thereby modify their properties. Although the biological impact of such modifications is well recognized, a detailed molecular picture of the binding process and of the mechanisms that drive the subsequent structural changes in the polymer is lacking. Here, we study the molecular mechanism of the condensation of calcium, a divalent cation, on hyaluronan, a ubiquitous polymer in human tissues. By combining two-dimensional infrared spectroscopy experiments with molecular dynamics simulations, we find that calcium specifically binds to hyaluronan at millimolar concentrations. Because of its large size and charge, the calcium cation can bind simultaneously to the negatively charged carboxylate group and the amide group of adjacent saccharide units. Molecular dynamics simulations and single-chain force spectroscopy measurements provide evidence that the binding of the calcium ions weakens the intramolecular hydrogen-bond network of hyaluronan, increasing the flexibility of the polymer chain. We also observe that the binding of calcium to hyaluronan saturates at a maximum binding fraction of ∼10–15 mol %. This saturation indicates that the binding of Ca2+ strongly reduces the probability of subsequent binding of Ca2+ at neighboring binding sites, possibly as a result of enhanced conformational fluctuations and/or electrostatic repulsion effects. Our findings provide a detailed molecular picture of ion condensation and reveal the severe effect of a few, selective and localized electrostatic interactions on the rigidity of a polyelectrolyte chain.
Description
Macromolecules, 54, 1137−1146
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
American Chemical Society (ACS)
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
Macromolecules
https://harc.rpi.edu/
Access
A full text version is available in DSpace@RPI
CC BY — Creative Commons Attribution
ACS Author Choice License