Synthesis and control of morphology, stoichiometry, and composition of transition metal oxides

Loading...
Thumbnail Image
Authors
Brier, Matthew Isaac
Issue Date
2015-12
Type
Electronic thesis
Thesis
Language
ENG
Keywords
Chemical engineering
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract
Transition metal oxides (TMOs) are an important class of materials that have found uses in diverse applications, such as heterogeneous catalysts, sensors, and high temperature superconductors, due to their complex surface chemistry and high mobility of lattice oxygen atoms. Point defects such as oxygen and metal atom vacancies significantly perturb the electronic structure of TMOs and profoundly impact their electrical, optical, ferroelectric, photocatalytic, and other functional properties. As a result, significant research is being done to develop synthesis techniques that can produce metal oxides with controllable material properties. In this thesis, the use of hot wire chemical vapor deposition (HWCVD) was studied with the aim of precisely controlling the morphology, stoichiometry, and composition of TMOs. With molybdenum oxide as the model system, the control of morphology and stoichiometry was achieved by modulation of deposition parameters, such as filament power and gas phase composition.
Description
December 2015
School of Engineering
Full Citation
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Terms of Use
Journal
Volume
Issue
PubMed ID
DOI
ISSN
EISSN