Glycosaminoglycan compositional analysis of relevant tissues in ZIKV pathogenesis and in vitro evaluation of heparin as antiviral against ZIKV infection

Loading...
Thumbnail Image
Authors
Kim, S.Y.
Koetzner, C.A.
Payne, A.F.
Nierode, G.J.
Yu, Y.
Wang, R.
Barr, E.
Dordick, J.S.
Kramer, L.D.
Zhang, F.
Issue Date
2019
Type
Article
Language
ENG
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Research Projects
Organizational Units
Journal Issue
Alternative Title
Abstract
Zika virus (ZIKV) is an enveloped RNA virus from the flavivirus family that can cause fetal neural abnormalities in pregnant women. Previously, we established that ZIKV-EP (envelope protein) binds to human placental chondroitin sulfate (CS), suggesting that CS may be a potential host cell surface receptor in ZIKV pathogenesis. In this study, we further characterized the GAG disaccharide composition of other biological tissues (i.e., mosquitoes, fetal brain cells, and eye tissues) in ZIKV pathogenesis to investigate the role of tissue specific GAGs. Heparan sulfate (HS) was the major GAG, and levels of HS-6-sulfo, HS 0S (unsulfated HS), and CS 4S disaccharides were the main differences in the GAG composition of Aedes aegypti and Aedes albopictus mosquitoes. In human fetal neural progenitor and differentiated cells, HS 0S and CS 4S were the main disaccharides. A change in disaccharide composition levels was observed between undifferentiated and differentiated cells. In different regions of the bovine eyes, CS was the major GAG, and the amounts of hyaluronic acid or keratan sulfate varied depending on the region of the eye. Next, we examined heparin (HP) of various structures to investigate their potential in vitro antiviral activity against ZIKV and Dengue virus (DENV) infection in Vero cells. All compounds effectively inhibited DENV replication; however, they surprisingly promoted ZIKV replication. HP of longer chain lengths more strongly promoted activity in ZIKV replication. This study further expands our understanding of role of GAGs in ZIKV pathogenesis and carbohydrate-based antivirals against flaviviral infection.
Description
Biochemistry, 58, 1155–1166
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Full Citation
Glycosaminoglycan compositional analysis of relevant tissues in ZIKV pathogenesis and in vitro evaluation of heparin as antiviral against ZIKV infection, S.Y. Kim, C.A. Koetzner, A.F. Payne, G.J. Nierode, Y. Yu, R. Wang, E. Barr, J.S. Dordick, L.D. Kramer, F. Zhang, R.J. Linhardt, Biochemistry, 58, 1155–1166, 2019.
Publisher
American Chemical Society (ACS)
Terms of Use
Journal
Volume
Issue
PubMed ID
DOI
ISSN
EISSN